A novel in silico antimicrobial peptide DP7 combats MDR Pseudomonas aeruginosa and related biofilm infections

Author:

Yin Qi12ORCID,Wu Siwen1,Wu Lei1,Wang Zhenling1,Mu Yandong3,Zhang Rui1,Dong Chunyan1,Zhou Bailing1,Zhao Binyan1,Zheng Jiajun3,Sun Ying1,Cheng Xingjun1,Yang Li1

Affiliation:

1. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China

2. Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, People’s Republic of China

3. Stomatology Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China

Abstract

Abstract Background Antimicrobial peptides are promising alternative antimicrobial agents to combat MDR. DP7, an antimicrobial peptide designed in silico, possesses broad-spectrum antimicrobial activities and immunomodulatory effects. However, the effects of DP7 against Pseudomonas aeruginosa and biofilm infection remain largely unexplored. Objectives To assess (i) the antimicrobial activity of DP7 against MDR P. aeruginosa; and (ii) the antibiofilm activity against biofilm infection. Also, to preliminarily investigate the possible antimicrobial mode of action. Methods The MICs of DP7 for 104 clinical P. aeruginosa strains (including 57 MDR strains) and the antibiofilm activity were determined. RNA-Seq, genome sequencing and cell morphology were conducted. Both acute and chronic biofilm infection mouse models were established. Two mutants, resulting from point mutations associated with LPS and biofilms, were constructed to investigate the potential mode of action. Results DP7, at 8–32 mg/L, inhibited the growth of clinical P. aeruginosa strains and, at 64 mg/L, reduced biofilm formation by 43% to 68% in vitro. In acute lung infection, 0.5 mg/kg DP7 exhibited a 70% protection rate and reduced bacterial colonization by 50% in chronic infection. DP7 mainly suppressed gene expression involving LPS and outer membrane proteins and disrupted cell wall structure. Genome sequencing of the DP7-resistant strain DP7R revealed four SNPs controlling LPS and biofilm production. gshA44 and wbpJ139 mutants displayed LPS reduction and motility deficiency, conferring the reduction of LPS and biofilm biomass of strain DP7R and indicating that LPS was a potential target of DP7. Conclusions These results demonstrate that DP7 may hold potential as an effective antimicrobial agent against MDR P. aeruginosa and related infections.

Funder

National Natural Science Foundation of China

National Major Scientific and Technological Special Project for ‘Significant New Drugs Development’

Project for Disciplines of Excellence

West China Hospital

Sichuan University

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

Reference82 articles.

1. The antibiotic resistance crisis. Part 1: causes and threats;Ventola;P T,2015

2. Tackling antibiotic resistance: the environmental framework;Berendonk;Nat Rev Microbiol,2015

3. Molecular mechanisms of antibiotic resistance;Blair;Nat Rev Microbiol,2015

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3