Finding the strongest stable massless column with a follower load and relocatable concentrated masses

Author:

Kirillov Oleg N1ORCID,Overton Michael L2ORCID

Affiliation:

1. Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

2. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

Abstract

Summary We consider the problem of optimal placement of concentrated masses along a massless elastic column that is clamped at one end and loaded by a nonconservative follower force at the free end. The goal is to find the largest possible interval such that the variation in the loading parameter within this interval preserves stability of the structure. The stability constraint is nonconvex and nonsmooth, making the optimization problem quite challenging. We give a detailed analytical treatment for the case of two masses, arguing that the optimal parameter configuration approaches the flutter and divergence boundaries of the stability region simultaneously. Furthermore, we conjecture that this property holds for any number of masses, which in turn suggests a simple formula for the maximal load interval for $n$ masses. This conjecture is strongly supported by extensive computational results, obtained using the recently developed open-source software package granso (GRadient-based Algorithm for Non-Smooth Optimization) to maximize the load interval subject to an appropriate formulation of the nonsmooth stability constraint. We hope that our work will provide a foundation for new approaches to classical long-standing problems of stability optimization for nonconservative elastic systems arising in civil and mechanical engineering.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference66 articles.

1. Die Knicklast des einseitig eingespannten, tangential gedrückten Stäbes;Beck;Z. Angew. Math. Mech.,1952

2. Beck’s problem;Carr;SIAM J. Appl. Math.,1979

3. Dynamic Stability of Columns under Nonconservative Forces

4. Linear elastic stability. A critical analysis of methods, First part;Ziegler;ZAMP Z. Angew. Math. Phys.,1953

5. Linear elastic stability. A critical analysis of methods, Second part;Ziegler;ZAMP Z. Angew. Math. Phys.,1953

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flutter instability in solids and structures, with a view on biomechanics and metamaterials;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3