A Geometrical Regularity Criterion in Terms of Velocity Profiles for the Three-Dimensional Navier–Stokes Equations

Author:

Tran C V1,Yu X2

Affiliation:

1. (School of Mathematics and Statistics, University of St Andrews, St Andrews)

2. (Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada)

Abstract

Summary In this article, we present a new kind of regularity criteria for the global well-posedness problem of the three-dimensional Navier–Stokes equations in the whole space. The novelty of the new results is that they involve only the profiles of the magnitude of the velocity. One particular consequence of our theorem is as follows. If for every fixed $t\in (0,T)$, the ‘large velocity’ region $\Omega:=\{(x,t)\mid |u(x,t)|>C(q)\left|\mkern-2mu\left|{u}\right|\mkern-2mu\right|_{L^{3q-6}}\}$, for some $C(q)$ appropriately defined, shrinks fast enough as $q\nearrow \infty$, then the solution remains regular beyond $T$. We examine and discuss velocity profiles satisfying our criterion. It remains to be seen whether these profiles are typical of general Navier–Stokes flows.

Funder

Institute of Mathematics and its Application

NSERC Discovery

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Sur le mouvement d’un liquide visqueux emplissant l’espace;Leray;Acta Math.,1934

2. Un teorema di unicità per le equazioni di Navier–Stokes;Prodi;Ann. Math. Pura Appl.,1959

3. On the interior regularity of weak solutions of the Navier–Stokes equations;Serrin;Arch. Rational Mech. Anal.,1962

4. $L_{3,\infty}$ -solutions of Navier–Stokes equations and backward uniqueness;Escauriaza;Uspekhi Mat. Nauk.,2003

5. Weak and strong solutions of the 3D Navier–Stokes equations and their relation to a chessboard of convergent inverse length scales;Gibbon;J. Nonlinear Sci.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3