Axisymmetric contact of two different power-law graded elastic bodies and an integral equation with two Weber–Schafheitlin kernels

Author:

Antipov Y A1,Mkhitaryan S M2

Affiliation:

1. Louisiana State University Department of Mathematics, , Baton Rouge, LA 70803, USA

2. National University of Architecture and Construction Department of Mechanics of Elastic and Viscoelastic Bodies, National Academy of Sciences, Yerevan 0019, Armenia and Department of Mathematics and Physics, , Yerevan 0009, Armenia

Abstract

Summary This article analyzes the axisymmetric contact problem of two elastic inhomogeneous bodies whose Young moduli are power functions of depth and the exponents are not necessarily the same. It is shown that the model problem is equivalent to an integral equation with respect to the pressure distribution whose kernel is a linear combination of two Weber–Schafheitlin integrals. The pressure is expanded in terms of the Jacobi polynomials, and the expansion coefficients are recovered by solving an infinite system of linear algebraic equations of the second kind. The coefficients of the system are represented through Mellin convolution integrals and computed explicitly. The Hertzian and Johnson–Kendall–Robertson adhesive models are employed to determine the contact radius, the displacement of distant points of the contacting bodies, the pressure distribution and the elastic normal displacement of surface points outside the contact circular zone. The effects of the exponents of the Young moduli and the surface energy density on the pressure distribution and the displacements are numerically analyzed.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3