MYB-bHLH-TTG1 in a Multi-tiered Pathway Regulates Arabidopsis Seed Coat Mucilage Biosynthesis Genes Including PECTIN METHYLESTERASE INHIBITOR14 Required for Homogalacturonan Demethylesterification

Author:

Allen Patrick J1ORCID,Napoli Ross S1,Parish Roger W1,Li Song Feng1

Affiliation:

1. Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, School of Agriculture, Biomedicine and Environment, La Trobe University , Bundoora, Melbourne, Victoria 3086, Australia

Abstract

Abstract MYB-bHLH-TTG1 (MBW) transcription factor (TF) complexes regulate Arabidopsis seed coat biosynthesis pathways via a multi-tiered regulatory mechanism. The MYB genes include MYB5, MYB23 and TRANSPARENT TESTA2 (TT2), which regulate GLABRA2 (GL2), HOMEODOMAIN GLABROUS2 (HDG2) and TRANSPARENT TESTA GLABRA2 (TTG2). Here, we examine the role of PECTIN METHYLESTERASE INHIBITOR14 (PMEI14) in seed coat mucilage pectin methylesterification and provide evidence in support of multi-tiered regulation of seed coat mucilage biosynthesis genes including PMEI14. The PMEI14 promoter was active in the seed coat and developing embryo. A pmei14 mutant exhibited stronger attachment of the outer layer of seed coat mucilage, increased mucilage homogalacturonan demethylesterification and reduced seed coat radial cell wall thickness, results consistent with decreased PMEI activity giving rise to increased PME activity. Reduced mucilage release from the seeds of myb5, myb23, tt2 and gl2, hdg2, ttg2 triple mutants indicated that HDG2 and MYB23 play minor roles in seed coat mucilage deposition. Chromatin immunoprecipitation analysis found that MYB5, TT8 and seven mucilage pathway structural genes are directly regulated by MYB5. Expression levels of GL2, HDG2, TTG2 and nine mucilage biosynthesis genes including PMEI14 in the combinatorial mutant seeds indicated that these genes are positively regulated by at least two of those six TFs and that TTG1 and TTG2 are major regulators of PMEI14 expression. Our results show that MYB-bHLH-TTG1 complexes regulate mucilage biosynthesis genes, including PMEI14, both directly and indirectly via a three-tiered mechanism involving GL2, HDG2 and TTG2.

Funder

Australian Research Council

Australian Government Research Training Program

La Trobe University

Grains Research and Development Corporation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3