Formation of a Stable PSI–PSII Megacomplex in Rice That Conducts Energy Spillover

Author:

Kim Eunchul12ORCID,Yokono Makio12,Tsugane Kazuo3,Ishii Asako1,Noda Chiyo1,Minagawa Jun12ORCID

Affiliation:

1. Division of Environmental Photobiology, National Institute for Basic Biology , 38 Nishigonaka, Myodaiji Okazaki, Aichi, 444-8585 Japan

2. Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies , 38 Nishigonaka, Myodaiji Okazaki, Aichi, 444-8585 Japan

3. Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology , 38 Nishigonaka, Myodaiji Okazaki, Aichi, 444-8585 Japan

Abstract

Abstract In green plants, photosystem I (PSI) and photosystem II (PSII) bind to their respective light-harvesting complexes (LHCI and LHCII) to form the PSI−LHCI supercomplex and the PSII−LHCII supercomplex, respectively. These supercomplexes further form megacomplexes, like PSI−PSII and PSII−PSII in Arabidopsis (Arabidopsis thaliana) and spinach to modulate their light-harvesting properties, but not in the green alga Chlamydomonas reinhardtii. Here, we fractionated and characterized the stable rice PSI−PSII megacomplex. The delayed fluorescence from PSI (lifetime ∼25 ns) indicated energy transfer capabilities between the two photosystems (energy spillover) in the rice PSI−PSII megacomplex. Fluorescence lifetime analysis revealed that the slow PSII to PSI energy transfer component was more dominant in the rice PSI−PSII supercomplexes than in Arabidopsis ones, suggesting that PSI and PSII in rice form a megacomplex not directly but through LHCII molecule(s), which was further confirmed by the negatively stained electron microscopy analysis. Our results suggest species diversity in the formation and stability of photosystem megacomplexes, and the stable PSI–PSII supercomplex in rice may reflect its structural adaptation.

Funder

Takeda Science Foundation

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3