Affiliation:
1. Department of Statistics, North Carolina State University, 2311 Stinson Dr. Raleigh, NC 27695-8203, USA
Abstract
Summary
Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo.
Funder
Bill and Melinda Gates Foundation
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献