Spatiotemporal varying coefficient model for respiratory disease mapping in Taiwan

Author:

Wang Feifei1,Duan Congyuan2,Li Yang3ORCID,Huang Hui4,Shia Ben-Chang5

Affiliation:

1. Center for Applied Statistics, School of Statistics, Renmin University of China , Beijing, 100872, China

2. School of Mathematics, Sun Yat-Sen University , Guangdong, 510275, China

3. Renmin University of China Center for Applied Statistics, School of Statistics, and Statistical Consulting Center, , Beijing, 100872, China

4. Sun Yat-Sen University School of Mathematics, , Guangdong, 510275, China

5. Fu Jen Catholic University AI Development Center of Taiwan Institute of Artificial Intelligence, , New Taipei City, 24205, Taiwan

Abstract

Summary Respiratory diseases have been global public health problems for a long time. In recent years, air pollutants as important risk factors have drawn lots of attention. In this study, we investigate the influence of $\pm2.5$ (particulate matters in diameter less than 2.5 ${\rm{\mu }} m$) on hospital visit rates for respiratory diseases in Taiwan. To reveal the spatiotemporal pattern of data, we propose a Bayesian disease mapping model with spatially varying coefficients and a parametric temporal trend. Model fitting is conducted using the integrated nested Laplace approximation, which is a widely applied technique for large-scale data sets due to its high computational efficiency. The finite sample performance of the proposed method is studied through a series of simulations. As demonstrated by simulations, the proposed model can improve both the parameter estimation performance and the prediction performance. We apply the proposed model on the respiratory disease data in 328 third-level administrative regions in Taiwan and find significant associations between hospital visit rates and $\pm2.5$.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3