A scalable approach for continuous time Markov models with covariates

Author:

Hatami Farhad1,Ocampo Alex2,Graham Gordon2,Nichols Thomas E34ORCID,Ganjgahi Habib15

Affiliation:

1. Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield, Department of Medicine, University of Oxford and Department of Statistics, University of Oxford , Oxford, OX3 7LF, UK

2. Novartis Pharma AG , CH-4056 Basel, Switzerland

3. Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford , Oxford, OX3 7LF, UK

4. Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, OX3 9DU, UK

5. Department of Statistics, University of Oxford , 24-29 St Giles’ , Oxford, OX1 3LB, UK

Abstract

Abstract Existing methods for fitting continuous time Markov models (CTMM) in the presence of covariates suffer from scalability issues due to high computational cost of matrix exponentials calculated for each observation. In this article, we propose an optimization technique for CTMM which uses a stochastic gradient descent algorithm combined with differentiation of the matrix exponential using a Padé approximation. This approach makes fitting large scale data feasible. We present two methods for computing standard errors, one novel approach using the Padé expansion and the other using power series expansion of the matrix exponential. Through simulations, we find improved performance relative to existing CTMM methods, and we demonstrate the method on the large-scale multiple sclerosis NO.MS data set.

Funder

Novartis through the Oxford BDI-Novartis Collaboration for AI in Medicine

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3