Penalized estimation for competing risks regression with applications to high-dimensional covariates

Author:

Ambrogi Federico,Scheike Thomas H.

Abstract

High-dimensional regression has become an increasingly important topic for many research fields. For example, biomedical research generates an increasing amount of data to characterize patients' bio-profiles (e.g. from a genomic high-throughput assay). The increasing complexity in the characterization of patients' bio-profiles is added to the complexity related to the prolonged follow-up of patients with the registration of the occurrence of possible adverse events. This information may offer useful insight into disease dynamics and in identifying subset of patients with worse prognosis and better response to the therapy. Although in the last years the number of contributions for coping with high and ultra-high-dimensional data in standard survival analysis have increased (Witten and Tibshirani, 2010. Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research19(1), 29–51), the research regarding competing risks is less developed (Binder and others, 2009. Boosting for high-dimensional time-to-event data with competing risks. Bioinformatics25(7), 890–896). The aim of this work is to consider how to do penalized regression in the presence of competing events. The direct binomial regression model of Scheike and others (2008. Predicting cumulative incidence probability by direct binomial regression. Biometrika95(1), 205–220) is reformulated in a penalized framework to possibly fit a sparse regression model. The developed approach is easily implementable using existing high-performance software to do penalized regression. Results from simulation studies are presented together with an application to genomic data when the endpoint is progression-free survival. An R function is provided to perform regularized competing risks regression according to the binomial model in the package timereg (Scheike and Martinussen, 2006. Dynamic Regression models for survival data. New York: Springer), available through CRAN.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3