Geographically dependent individual-level models for infectious diseases transmission

Author:

Mahsin M D1,Deardon Rob1,Brown Patrick2

Affiliation:

1. Department of Mathematics and Statistics and Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada

2. Department of Statistical Sciences, University of Toronto, Canada

Abstract

Summary Infectious disease models can be of great use for understanding the underlying mechanisms that influence the spread of diseases and predicting future disease progression. Modeling has been increasingly used to evaluate the potential impact of different control measures and to guide public health policy decisions. In recent years, there has been rapid progress in developing spatio-temporal modeling of infectious diseases and an example of such recent developments is the discrete-time individual-level models (ILMs). These models are well developed and provide a common framework for modeling many disease systems; however, they assume the probability of disease transmission between two individuals depends only on their spatial separation and not on their spatial locations. In cases where spatial location itself is important for understanding the spread of emerging infectious diseases and identifying their causes, it would be beneficial to incorporate the effect of spatial location in the model. In this study, we thus generalize the ILMs to a new class of geographically dependent ILMs, to allow for the evaluation of the effect of spatially varying risk factors (e.g., education, social deprivation, environmental), as well as unobserved spatial structure, upon the transmission of infectious disease. Specifically, we consider a conditional autoregressive (CAR) model to capture the effects of unobserved spatially structured latent covariates or measurement error. This results in flexible infectious disease models that can be used for formulating etiological hypotheses and identifying geographical regions of unusually high risk to formulate preventive action. The reliability of these models is investigated on a combination of simulated epidemic data and Alberta seasonal influenza outbreak data ($2009$). This new class of models is fitted to data within a Bayesian statistical framework using Markov chain Monte Carlo methods.

Funder

Canadian Statistical Sciences Institute

Natural Sciences and Engineering Research Council

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference35 articles.

1. Alberta Health Services. (2017). Primary Health Care Community Profiles. http://www.health.alberta.ca/services/PHC-community-profiles.html.

2. Incorporating contact network uncertainty in individual level models of infectious disease using approximate Bayesian computation;Almutiry,;The International Journal of Biostatistics,2019

3. Transmission of pneumococcal carriage in families: a latent Markov process model for binary longitudinal data;Auranen,;Journal of the American Statistical Association,2000

4. Complexity in mathematical models of public health policies: a guide for consumers of models;Basu,;PLoS Medicine,2013

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3