Marginal likelihood estimation of negative binomial parameters with applications to RNA-seq data

Author:

León-Novelo Luis1,Fuentes Claudio2,Emerson Sarah2

Affiliation:

1. Department of Biostatistics, University of Texas Health Science Center at Houston - School of Public Health, Houston, TX 77030, USA

2. Department of of Statistics, Oregon State University, Corvallis, OR 97331, USA fuentesc@stat.oregonstate.edu

Abstract

SUMMARY RNA-Seq data characteristically exhibits large variances, which need to be appropriately accounted for in any proposed model. We first explore the effects of this variability on the maximum likelihood estimator (MLE) of the dispersion parameter of the negative binomial distribution, and propose instead to use an estimator obtained via maximization of the marginal likelihood in a conjugate Bayesian framework. We show, via simulation studies, that the marginal MLE can better control this variation and produce a more stable and reliable estimator. We then formulate a conjugate Bayesian hierarchical model, and use this new estimator to propose a Bayesian hypothesis test to detect differentially expressed genes in RNA-Seq data. We use numerical studies to show that our much simpler approach is competitive with other negative binomial based procedures, and we use a real data set to illustrate the implementation and flexibility of the procedure.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference24 articles.

1. Differential expression analysis for sequence count data;Anders;Genome Biology,2010

2. Statistical design and analysis of RNA sequencing data;Auer;Genetics,2010

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;Journal of the Royal Statistical Society. Series B (Methodological),1995

4. Sex-specific and lineage-specific alternative splicing in primates;Blekhman;Genome research,2010

5. A note on n estimators for the binomial distribution;Carroll;Journal of the American Statistical Association,1985

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3