Constrained groupwise additive index models

Author:

Masselot Pierre1ORCID,Chebana Fateh2,Campagna Céline3,Lavigne Éric4,Ouarda Taha B M J2,Gosselin Pierre5

Affiliation:

1. London School of Hygiene & Tropical Medicine Department of Public Health, Environment and Society, , 15-17 Tavistock Place, WC1H 9SH, London, UK

2. Institut National de la Recherche Scientifique Centre Eau-Terre-Environnement, , 490, rue de la Couronne, Québec (Québec), G1K 9A9, Canada

3. Institut National de la Recherche Scientifique Centre Eau-Terre-Environnement, , 490, rue de la Couronne, Québec (Québec), G1K 9A9, Canada and Institut National de Santé Publique du Québec, 945, avenue Wolfe Québec (Québec) G1V 5B3 Canada

4. University of Ottawa School of Epidemiology and Public Health, , 600 Peter Morand Crescent, Room 101, Ottawa, Ontario K1G 5Z3, Canada and Air Health Science Division, Health Canada, 269 Laurier Avenue West, Mail Stop 4903B, Ottawa, Ontario K1A0K9 Canada

5. Centre Eau-Terre-Environnement Institut National de la Recherche Scientifique, , Québec, Canada, Institut National de Santé Publique du Québec, Québec, Canada, and Ouranos, Montréal, 550 Sherbrooke Ouest, Tour Ouest, 19eme Étage, Montréal (Québec), H3A 1B9, Canada

Abstract

Summary In environmental epidemiology, there is wide interest in creating and using comprehensive indices that can summarize information from different environmental exposures while retaining strong predictive power on a target health outcome. In this context, the present article proposes a model called the constrained groupwise additive index model (CGAIM) to create easy-to-interpret indices predictive of a response variable, from a potentially large list of variables. The CGAIM considers groups of predictors that naturally belong together to yield meaningful indices. It also allows the addition of linear constraints on both the index weights and the form of their relationship with the response variable to represent prior assumptions or operational requirements. We propose an efficient algorithm to estimate the CGAIM, along with index selection and inference procedures. A simulation study shows that the proposed algorithm has good estimation performances, with low bias and variance and is applicable in complex situations with many correlated predictors. It also demonstrates important sensitivity and specificity in index selection, but non-negligible coverage error on constructed confidence intervals. The CGAIM is then illustrated in the construction of heat indices in a health warning system context. We believe the CGAIM could become useful in a wide variety of situations, such as warning systems establishment, and multipollutant or exposome studies.

Funder

Ouranos consortium

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference70 articles.

1. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations;Agier,;Environmental Health Perspectives,2016

2. Sample size issues in time series regressions of counts on environmental exposures;Armstrong,;BMC Medical Research Methodology,2020

3. The role of humidity in associations of high temperature with mortality: a multiauthor, multicity study;Armstrong,;Environmental Health Perspectives,2019

4. Climate change, humidity, and mortality in the United States;Barreca,;Journal of Environmental Economics and Management,2012

5. A relative off set orthogonality convergence criterion for nonlinear least squares;Bates,;Technometrics,1981

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. cgaim: Constrained Groupwise Additive Index Models;CRAN: Contributed Packages;2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3