A very fast and accurate method for calling aberrations in array-CGH data

Author:

Benelli Matteo1,Marseglia Giuseppina1,Nannetti Genni2,Paravidino Roberta3,Zara Federico4,Bricarelli Franca Dagna3,Torricelli Francesca5,Magi Alberto6

Affiliation:

1. Diagnostic Genetic Unit, Careggi Hospital, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence 50141, Italy and Center for the Study of Complex Dynamics, University of Florence, Florence 50019, Italy matteo.benelli@gmail.com

2. Diagnostic Genetic Unit, Careggi Hospital, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence 50141, Italy

3. Laboratory Of Genetics, Ente Ospedaliero Ospedali Galliera, Genova 16128, Italy

4. Muscular and Neurodegenerative Disease Unit, Institute Gaslini, University of Genova, Genova 16147, Italy

5. Diagnostic Genetic Unit, Careggi Hospital, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence 50141, Italy and Center for the Study of Complex Dynamics, University of Florence, Florence 50019, Italy

6. Diagnostic Genetic Unit, Careggi Hospital, Azienda Ospedaliera Universitaria Careggi, Department of Medical and Surgical Critical Care, University of Florence, Florence 50141, Italy and Center for the Study of Complex Dynamics, University of Florence, Florence 50019, Italy

Abstract

Abstract Array comparative genomic hybridization (aCGH) is a microarray technology that allows one to detect and map genomic alterations. The standard workflow of the aCGH data analysis consists of 2 steps: detecting the boundaries of the regions of changed copy number by means of a segmentation algorithm (break point identification) and then labeling each region as loss, neutral, or gain with a probabilistic framework (calling procedure). In this paper, we introduce a novel calling procedure based on a mixture of truncated normal distributions, named FastCall, that aims to give aberration probabilities to segmented aCGH data in a very fast and accurate way. Both on synthetic and real aCGH data, FastCall obtains excellent performances in terms of classification accuracy and running time.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference9 articles.

1. Comparative analysis of algorithms for identifying amplifications and deletions in array-CGH data;Lai;Bioinformatics,2005

2. A shifting level model algorithm that identifies aberrations in array-CGH data;Magi;Biostatistics,2009

3. Circular binary segmentation for the analysis of array-based DNA copy number data;Olshen;Biostatistics,2004

4. A statistical approach for array-CGH data analysis;Picard;BMC Bioinformatics,2005

5. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays;Pinkel;Nature Genetics,1998

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3