Separating and reintegrating latent variables to improve classification of genomic data

Author:

Payne Nora Yujia1ORCID,Gagnon-Bartsch Johann A1

Affiliation:

1. Department of Statistics, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109, USA

Abstract

Summary Genomic data sets contain the effects of various unobserved biological variables in addition to the variable of primary interest. These latent variables often affect a large number of features (e.g., genes), giving rise to dense latent variation. This latent variation presents both challenges and opportunities for classification. While some of these latent variables may be partially correlated with the phenotype of interest and thus helpful, others may be uncorrelated and merely contribute additional noise. Moreover, whether potentially helpful or not, these latent variables may obscure weaker effects that impact only a small number of features but more directly capture the signal of primary interest. To address these challenges, we propose the cross-residualization classifier (CRC). Through an adjustment and ensemble procedure, the CRC estimates and residualizes out the latent variation, trains a classifier on the residuals, and then reintegrates the latent variation in a final ensemble classifier. Thus, the latent variables are accounted for without discarding any potentially predictive information. We apply the method to simulated data and a variety of genomic data sets from multiple platforms. In general, we find that the CRC performs well relative to existing classifiers and sometimes offers substantial gains.

Funder

National Science Foundation Graduate Research Fellowship

National Science Foundation RTG

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3