Modeling local dependence in latent vector autoregressive models

Author:

Tran Trung Dung1,Lesaffre Emmanuel1,Verbeke Geert1,Duyck Joke2

Affiliation:

1. Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Katholieke Universiteit Leuven, Kapucijnenvoer 35, B-3000 Leuven, Belgium and Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Universiteit Hasselt, B-3590 Diepenbeek, Belgium

2. Department of Oral Health Sciences, Katholieke Universiteit Leuven, Kapucijnenvoer 7, B-3000 Leuven, Belgium

Abstract

Summary We propose a Bayesian latent vector autoregressive (LVAR) model to analyze multivariate longitudinal data of binary and ordinal variables (items) as a function of a small number of continuous latent variables. We focus on the evolution of the latent variables while taking into account the correlation structure of the responses. Often local independence is assumed in this context. Local independence implies that, given the latent variables, the responses are assumed mutually independent cross-sectionally and longitudinally. However, in practice conditioning on the latent variables may not remove the dependence of the responses. We address local dependence by further conditioning on item-specific random effects. A simulation study shows that wrongly assuming local independence may give biased estimates for the regression coefficients of the LVAR process as well as the item-specific parameters. Novel features of our proposal include (i) correcting biased estimates of the model parameters, especially the regression coefficients of the LVAR process, obtained when local dependence is ignored and (ii) measuring the magnitude of local dependence. We applied our model on data obtained from a registry on the elderly population in Belgium. The purpose was to examine the values of oral health information on top of general health information.

Funder

KU Leuven

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference47 articles.

1. On the existence of maximum likelihood estimates in logistic regression models;Albert,;Biometrika,1984

2. Bayesian analysis of binary and polychotomous response data;Albert,;Journal of the American Statistical Association,1993

3. Sequential ordinal modeling with applications to survival data;Albert,;Biometrics,2001

4. Exploring home care interventions for frail older people in Belgium: a comparative effectiveness study;Almeida Mello,;Journal of the American Geriatrics Society,2016

5. Controlling response dependence in the measurement of change using the Rasch model;Andrich,;Statistical Methods in Medical Research,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3