Dynamic landmark prediction for mixture data

Author:

Garcia Tanya P1,Parast Layla1

Affiliation:

1. Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX 77843-3143, USA and RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, USA

Abstract

Summary In kin-cohort studies, clinicians want to provide their patients with the most current cumulative risk of death arising from a rare deleterious mutation. Estimating the cumulative risk is difficult when the genetic mutation status is unknown and only estimated probabilities of a patient having the mutation are available. We estimate the cumulative risk for this scenario using a novel nonparametric estimator that incorporates covariate information and dynamic landmark prediction. Our estimator has improved prediction accuracy over existing estimators that ignore covariate information. It is built within a dynamic landmark prediction framework whereby we can obtain personalized dynamic predictions over time. Compared to current standards, a simple transformation of our estimator provides more efficient estimates of marginal distribution functions in settings where patient-specific predictions are not the main goal. We show our estimator is unbiased and has more predictive accuracy compared to methods that ignore covariate information and landmarking. Applying our method to a Huntington disease study of mortality, we develop dynamic survival prediction curves incorporating gender and familial genetic information.

Funder

Disease Society of America Human Biology Project Fellowship

National Institute of Neurological Disorders and Stroke

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease;Annual Review of Statistics and Its Application;2023-09-08

2. landmix: Landmark Prediction for Mixture Data;CRAN: Contributed Packages;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3