Scalable kernel balancing weights in a nationwide observational study of hospital profit status and heart attack outcomes

Author:

Kim Kwangho12,Niknam Bijan A1,Zubizarreta José R134

Affiliation:

1. Department of Health Care Policy, Harvard Medical School , 180-A Longwood Avenue , Boston, MA 02115, United States

2. Department of Statistics, College of Political Science and Economics, Korea University , Seoul, 02841, Korea

3. Department of Biostatistics, Harvard T.H. Chan School of Public Health , 677 Huntington Avenue , Boston, MA 02115, United States

4. Department of Statistics, Faculty of Arts and Sciences, Harvard University , Science Center 400 Suite, One Oxford Street , Cambridge, MA 02138, United States

Abstract

Summary Weighting is a general and often-used method for statistical adjustment. Weighting has two objectives: first, to balance covariate distributions, and second, to ensure that the weights have minimal dispersion and thus produce a more stable estimator. A recent, increasingly common approach directly optimizes the weights toward these two objectives. However, this approach has not yet been feasible in large-scale datasets when investigators wish to flexibly balance general basis functions in an extended feature space. To address this practical problem, we describe a scalable and flexible approach to weighting that integrates a basis expansion in a reproducing kernel Hilbert space with state-of-the-art convex optimization techniques. Specifically, we use the rank-restricted Nyström method to efficiently compute a kernel basis for balancing in nearly linear time and space, and then use the specialized first-order alternating direction method of multipliers to rapidly find the optimal weights. In an extensive simulation study, we provide new insights into the performance of weighting estimators in large datasets, showing that the proposed approach substantially outperforms others in terms of accuracy and speed. Finally, we use this weighting approach to conduct a national study of the relationship between hospital profit status and heart attack outcomes in a comprehensive dataset of 1.27 million patients. We find that for-profit hospitals use interventional cardiology to treat heart attacks at similar rates as other hospitals but have higher mortality and readmission rates.

Funder

Alfred P. Sloan Foundation

Patient Centered Outcomes Research Institute

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3