Optimized adaptive enrichment designs for three-arm trials: learning which subpopulations benefit from different treatments

Author:

Steingrimsson Jon Arni1,Betz Joshua2,Qian Tianchen3,Rosenblum Michael2

Affiliation:

1. Department of Biostatistics, Brown University, 121 South Main Street, Providence, RI 02903, USA

2. Department of Biostatistics, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA

3. Department of Statistics, Harvard University, 1 Oxford St, Cambridge, MA 02138, USA

Abstract

Summary We consider the problem of designing a confirmatory randomized trial for comparing two treatments versus a common control in two disjoint subpopulations. The subpopulations could be defined in terms of a biomarker or disease severity measured at baseline. The goal is to determine which treatments benefit which subpopulations. We develop a new class of adaptive enrichment designs tailored to solving this problem. Adaptive enrichment designs involve a preplanned rule for modifying enrollment based on accruing data in an ongoing trial. At the interim analysis after each stage, for each subpopulation, the preplanned rule may decide to stop enrollment or to stop randomizing participants to one or more study arms. The motivation for this adaptive feature is that interim data may indicate that a subpopulation, such as those with lower disease severity at baseline, is unlikely to benefit from a particular treatment while uncertainty remains for the other treatment and/or subpopulation. We optimize these adaptive designs to have the minimum expected sample size under power and Type I error constraints. We compare the performance of the optimized adaptive design versus an optimized nonadaptive (single stage) design. Our approach is demonstrated in simulation studies that mimic features of a completed trial of a medical device for treating heart failure. The optimized adaptive design has $25\%$ smaller expected sample size compared to the optimized nonadaptive design; however, the cost is that the optimized adaptive design has $8\%$ greater maximum sample size. Open-source software that implements the trial design optimization is provided, allowing users to investigate the tradeoffs in using the proposed adaptive versus standard designs.

Funder

Patient-Centered Outcomes Research Institute

U.S. Food and Drug Administration

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal design for inference on the threshold of a biomarker;Statistical Methods in Medical Research;2024-01-31

2. New insights into adaptive enrichment designs;Statistical Papers;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3