Bayesian inference for network meta-regression using multivariate random effects with applications to cholesterol lowering drugs

Author:

Li Hao1,Chen Ming-Hui1,Ibrahim Joseph G2,Kim Sungduk3,Shah Arvind K4,Lin Jianxin4,Tershakovec Andrew M4

Affiliation:

1. Department of Statistics, University of Connecticut, Storrs, CT, USA

2. Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA

3. Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA

4. Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA

Abstract

Summary Low-density lipoprotein cholesterol (LDL-C) has been identified as a causative factor for atherosclerosis and related coronary heart disease, and as the main target for cholesterol- and lipid-lowering therapy. Statin drugs inhibit cholesterol synthesis in the liver and are typically the first line of therapy to lower elevated levels of LDL-C. On the other hand, a different drug, Ezetimibe, inhibits the absorption of cholesterol by the small intestine and provides a different mechanism of action. Many clinical trials have been carried out on safety and efficacy evaluation of cholesterol lowering drugs. To synthesize the results from different clinical trials, we examine treatment level (aggregate) network meta-data from 29 double-blind, randomized, active, or placebo-controlled statins +/$-$ Ezetimibe clinical trials on adult treatment-naïve patients with primary hypercholesterolemia. In this article, we propose a new approach to carry out Bayesian inference for arm-based network meta-regression. Specifically, we develop a new strategy of grouping the variances of random effects, in which we first formulate possible sets of the groups of the treatments based on their clinical mechanisms of action and then use Bayesian model comparison criteria to select the best set of groups. The proposed approach is especially useful when some treatment arms are involved in only a single trial. In addition, a Markov chain Monte Carlo sampling algorithm is developed to carry out the posterior computations. In particular, the correlation matrix is generated from its full conditional distribution via partial correlations. The proposed methodology is further applied to analyze the network meta-data from 29 trials with 11 treatment arms.

Funder

National Institutes of Health

Intramural Research Program of National Institutes of Health

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3