Expanded Supercooling Capacity With No Cryoprotectant Accumulation Underlies Cold Tolerance of the European Grapevine Moth

Author:

Masoudmagham Ashraf1,Izadi Hamzeh1ORCID,Mohammadzadeh Mojgan2

Affiliation:

1. Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2. Pistachio Safety Research Center, Rafsanajn University of Medical Sciences, Rafsanjan, Iran

Abstract

Abstract The European grapevine moth, Lobesia botrana (Denis et Schiffermuller), is a serious invasive pest that causes significant losses to the flowers and fruits of grapes in most of the world. This multivoltine pest passes the winter as the third-generation diapausing pupa. The current study was designed to compare nondiapausing (first and second generations) and diapausing pupae (third generation) and to investigate the relationship among cold tolerance, the supercooling point (SCP), and diapause development of the third-generation diapausing pupae. The lethal temperatures (LTs) for the three generations were determined using 24-h exposure at subzero temperatures. The mean SCP of the pupae was estimated at approx. −22.6°C, the lowest level of which (−23.7°C) was recorded in the well-developed diapausing pupae in February. The highest level of cold tolerance was also recorded in February. There were no significant differences among the temperatures required to kill 30, 50, and 90% of the pupae. The temperatures significantly decreased from October onward and reached the lowest levels in February during which the lowest SCP and the highest cold tolerance were observed in the diapausing pupae. No significant differences were found in the cryoprotectant levels, among the diapausing and nondiapausing pupae, and the diapause development. The highest activity of cAMP-dependent protein kinase (AMPK) was recorded in the late diapause in February. The findings suggested a relationship among SCP depression, cold tolerance enhancement, and diapause development. A bimodal cold-tolerance strategy (freeze-intolerant and freeze-tolerant) was found to be a feature of the pupae.

Funder

Vali-e-Asr University of Rafsanjan

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3