Quantifying the Contribution of Seed Blended Refugia in Field Corn to Helicoverpa zea (Lepidoptera: Noctuidae) Populations

Author:

Towles T B1ORCID,Buntin G D2,Catchot A L1,Gore J3ORCID,Cook D R3ORCID,Caprio M A1ORCID,Daves C4

Affiliation:

1. Mississippi State University, Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Clay Lyle Entomology Building Room 110, Mississippi State, MS, USA

2. Department of Entomology, University of Georgia - Griffin Campus, Griffin, GA, USA

3. Mississippi State University, Delta Research and Extension Center, Stoneville, MS, USA

4. Bayer Crop Science, St. Louis, MO, USA

Abstract

Abstract Helicoverpa zea (Boddie), a pest of cotton that also occurs in field corn, is commonly controlled through the use of foliar-applied insecticides or transgenic crops expressing Bacillus thuringiensis (Berliner) (Bt) genes. To minimize the risk of Bt resistance in pest populations, refuge systems have been implemented for sustainable agroecosystem management. Historically, structured refuge compliance among growers has been low, leading to the commercialization of seed blended refugia. To test the viability of seed blended refugia in southern U.S. field corn, field studies were conducted in Mississippi and Georgia during 2016, 2017, and 2018 growing seasons. To quantify adult H. zea emergence from structured (non-Bt corn) and seed blended refuge options, emergence traps were utilized. Kernel damage among seed blended refuge and structured refuge corn ears were recorded and compared. The timing of moth emergence was recorded. When compared to a structured refuge, H. zea adult moth emergence from seed blended refugia did not significantly differ. Kernel damage of non-Bt plants in the seed blended treatments was not significantly different than non-Bt plants in the structured refuge treatments. Moth emergence timing was not significantly delayed between the structured refuge and seed blended refuge treatments. Results of this study suggest that a seed blended refuge may provide an effective insecticide resistance management alternative for H. zea in areas where structured refuge compliance is low.

Funder

Monsanto

Agriculture Biotechnology Stewardship Technical Committee

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3