Molecular Identification and Functional Characterization of Vitellogenin Receptor From Harmonia axyridis (Coleoptera: Coccinellidae)

Author:

Han Hui1,Han ShiPeng1,Qin QiuJu1,Chen Jie12,Wang Da1ORCID,He Yunzhuan1ORCID

Affiliation:

1. College of Plant Protection, Hebei Agricultural University, Baoding 071000, China

2. Laboratory of Plant Protection, Handan Academy of Agricultural Sciences, Handan 056000, China

Abstract

Abstract Vitellogenin receptors (VgRs) have vital roles in reproduction by mediating endocytosis of the vitellogenin (Vg) in oviparous insects. Same as most insect species that possess only one VgR, in this study, a single VgR mRNA (HmVgR) was identified in an important natural enemy ladybeetle, Harmonia axyridis (Pallas). The open reading frame of HmVgR was 5,340 bases encoding a protein of 1,779 amino acids. Bioinformatic analyses showed that HmVgR had conserved domain motifs of low-density lipoprotein receptor family. Based on phylogenetic analysis, HmVgR had highly homologous within the Coleoptera. The transcriptional level of HmVgR was initially detected in the newly emerged female adults, gradually increased from day 3 to day 9, peaked on day 13, and then sharply decreased on day 15. Similar to most insects, HmVgR was expressed specifically in ovarian tissue. Moreover, RNA interference (RNAi) clearly decreased the transcription levels of HmVgR, which blocked the deposition of yolk protein in the ovaries, shortened the ovarian length, and led to negative impacts on reproductive-related parameters (i.e., prolonged preoviposition periods, reduced spawning and depressed hatchability). In sum, these results indicated that HmVgR may be critical for yolk protein deposition of oocytes and can play a key role in reproduction of female adults of H. axyridis. Our results provide conclusive proof for the important roles of HmVgR in fecundity, and establish a basis for further research on its interaction with vitellogenin.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Hebei Modern Agriculture Industry Technology System

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3