Exploring the Dynamics of Virulent and Avirulent Aphids: A Case for a ‘Within Plant’ Refuge

Author:

Banerjee Aniket1,Valmorbida Ivair2ORCID,O’Neal Matthew E2,Parshad Rana1

Affiliation:

1. Department of Mathematics, Iowa State University, Ames, IA, USA

2. Department of Entomology, Iowa State University, Ames, IA, USA

Abstract

Abstract The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is an invasive pest that can cause severe yield loss to soybeans in the North Central United States. A tactic to counter this pest is the use of aphid-resistant soybean varieties. However, the frequency of virulent biotypes that can survive on resistant varieties is expected to increase as more farmers use these varieties. Soybean aphids can alter soybean physiology primarily by two mechanisms, feeding facilitation, and the obviation of resistance, favoring subsequent colonization by additional conspecifics. We developed a nonlocal, differential equation population model to explore the dynamics of these biological mechanisms on soybean plants coinfested with virulent and avirulent aphids. We then use demographic parameters from laboratory experiments to perform numerical simulations via the model. We used this model to determine that initial conditions are an important factor in the season-long cooccurrence of both biotypes. The initial population of both biotypes above the resistance threshold or avirulent aphid close to resistance threshold and high virulent aphid population results in coexistence of the aphids throughout the season. These simulations successfully mimicked aphid dynamics observed in the field- and laboratory-based microcosms. The model showed an increase in colonization of virulent aphids increases the likelihood that aphid resistance is suppressed, subsequently increasing the survival of avirulent aphids. This interaction produced an indirect, positive interaction between the biotypes. These results suggest the potential for a ‘within plant’ refuge that could contribute to the sustainable use of aphid-resistant soybeans.

Funder

Insect Management Knowledge Program through Monsanto

Iowa State University

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3