Pathogenic Assessment of SfMNPV-Based Biopesticide on Spodoptera frugiperda (Lepidoptera: Noctuidae) Developing on Transgenic Soybean Expressing Cry1Ac Insecticidal Protein

Author:

Zakseski Marcelo R1,da Silva Filho José G1,Rakes Matheus1,Pazini Juliano de B1,da Rosa Ana Paula S A2,Marçon Paula3,Popham Holly J R3,Bernardi Oderlei4ORCID,Bernardi Daniel1ORCID

Affiliation:

1. Department of Crop Protection, Federal University of Pelotas (UFPel), Eliseu Maciel Avenue, Capão do Leão, Rio Grande do Sul 96160-000, Brazil

2. Brazilian Agricultural Research Corporation (Embrapa Temperate Agriculture), Pelotas, Rio Grande do Sul 9601-971, Brazil

3. AgBiTech, Fort Worth, TX 76155, USA

4. Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil

Abstract

Abstract Pathogenic assessment of a baculovirus-based biopesticide containing Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV: Baculoviridae: Alphabaculovirus) infecting fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) is reported. In the bioassays, neonates were infected with different doses of SfMNPV applied on Cry1Ac Bt soybean and non-Bt soybean. Our findings indicated that S. frugiperda neonates did not survive at 10 d post infection or develop into adults on Bt and non-Bt soybean sprayed with the field recommended dose of SfMNPV. In contrast, a proportion of the infected neonates developed into adults when infected with lower doses of SfMNPV (50%, 25%, and 10% of field dose) in both Bt and non-Bt soybean. However, S. frugiperda neonates surviving infection at the lowest virus doses on both soybean varieties showed longer neonate-to-pupa and neonate-to-adult periods, lower larval and pupal weights, reduced fecundity, and increased population suppression. Nevertheless, more pronounced pathogenicity of SfMNPV infecting neonates of S. frugiperda were verified on larvae that developed on Bt soybean. These findings revealed that, beyond mortality, the biopesticide containing SfMNPV also causes significant sublethal pathogenic effects on neonates of S. frugiperda developing on Bt and non-Bt soybean and suggested an additive effect among SfMNPV and Cry1Ac insecticidal protein expressed in Bt soybean.

Funder

Rio Grande do Sul Research Support Foundation

National Council of Technological and Scientific Development

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3