Multiple Mechanisms Conferring Broad-Spectrum Insecticide Resistance in the Tropical Bed Bug (Hemiptera: Cimicidae)

Author:

Dang Kai12,Doggett Stephen L2,Leong Xin-Yeng13,Veera Singham G4,Lee Chow-Yang15ORCID

Affiliation:

1. Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia

2. Department of Medical Entomology, NSW Health Pathology – ICPMR, Westmead Hospital, Westmead, NSW, Australia

3. Ecolab Malaysia, Level 12, The Pinnacle Persiaran Lagoon, Bandar Sunway, Petaling Jaya 46150, Selangor, Malaysia

4. Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia

5. Department of Entomology, University of California, Riverside, CA, USA

Abstract

Abstract The modern resurgence of the common (Cimex lectularius L.) and tropical bed bugs (C. hemipterus [F.]) is thought to be primarily due to insecticide resistance. While there are many reports on insecticide resistance mechanisms in C. lectularius, such information in C. hemipterus is limited. We examined dichloro-diphenyl-trichloroethane (DDT), malathion, deltamethrin, permethrin, lambda-cyhalothrin resistance, and the underlying mechanisms in several C. hemipterus strains (Australia: Queensland [QLD-AU]; Malaysia: Kuala Lumpur [KL-MY], Tanjung Tokong [TT-MY], Christian [CH-MY], and Green Lane [GL-MY]). We used a surface contact method, synergism studies (utilizing piperonyl butoxide [PBO], S,S,S-tributyl phosphorotrithioate [DEF], and diethyl maleate [DEM]), and molecular detection of kdr mutations. Results demonstrated that all C. hemipterus strains possessed high resistance to DDT and the pyrethroids and moderate to high resistance to malathion. Synergism studies showed that deltamethrin resistance in all strains was significantly (P < 0.05) inhibited by PBO. In contrast, deltamethrin resistance was not affected in DEF or DEM. Similar findings were found with lambda-cyhalothrin resistance. Malathion resistance was significantly (P < 0.05) reduced by DEF in all strains. Resistance to DDT was not affected by DEM in all strains. Multiple kdr mutations (M918I, D953G, and L1014F) were detected by molecular analyses. TT-MY strain was found with individuals possessing three kdr mutation combinations; D953G + L1014F (homozygous susceptible: M918), M918I + D953G + L1014F (heterozygous resistant: I918), and M918I + D953G + L1014F (homozygous resistant: I918). Individuals with M918I + D953G + L1014F (homozygous resistant: I918) survived longer on deltamethrin (>12 h) than those (≤1 h) with other combinations. M918I + L1014F mutations most likely conferred super-kdr characteristic toward pyrethroids and DDT in C. hemipterus.

Funder

Syngenta Crop Protection

Ministry of Education (MOE) Malaysia

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3