Biomass estimates derived from sector subsampling of 360° spherical images

Author:

Dai Xiao1,Ducey Mark J2,Wang Haozhou1,Yang Ting-Ru1,Hsu Yung-Han1,Ogilvie Jae1,Kershaw John A1

Affiliation:

1. Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada

2. Department of Natural Resources and the Environment University of New Hampshire, Durham, NH, USA

Abstract

Abstract Efficient subsampling designs reduce forest inventory costs by focusing sampling efforts on more variable forest attributes. Sector subsampling is an efficient and accurate alternative to big basal area factor (big BAF) sampling to estimate the mean basal area to biomass ratio. In this study, we apply sector subsampling of spherical images to estimate aboveground biomass and compare our image-based estimates with field data collected from three early spacing trials on western Newfoundland Island in eastern Canada. The results show that sector subsampling of spherical images produced increased sampling errors of 0.3–3.4 per cent with only about 60 trees measured across 30 spherical images compared with about 4000 trees measured in the field. Photo-derived basal area was underestimated because of occluded trees; however, we implemented an additional level of subsampling, collecting field-based basal area counts, to correct for bias due to occluded trees. We applied Bruce’s formula for standard error estimation to our three-level hierarchical subsampling scheme and showed that Bruce’s formula is generalizable to any dimension of hierarchical subsampling. Spherical images are easily and quickly captured in the field using a consumer-grade 360° camera and sector subsampling, including all individual tree measurements, were obtained using a custom-developed python software package. The system is an efficient and accurate photo-based alternative to field-based big BAF subsampling.

Funder

New Brunswick Innovation Foundation

Natural Sciences and Engineering Research Council of Canada

Department of Natural Resources, Government of Newfoundland and Labrador

Publisher

Oxford University Press (OUP)

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote sensing in forestry: current challenges, considerations and directions;Forestry: An International Journal of Forest Research;2023-05-10

2. Biomass allometric models for Larix rupprechtii based on Kosak’s taper curve equations and nonlinear seemingly unrelated regression;Frontiers in Plant Science;2023-01-09

3. Metric Rectification of Spherical Images;ISPRS International Journal of Geo-Information;2022-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3