Advances in smartphone positioning in forests: dual-frequency receivers and raw GNSS data

Author:

Tomaštík Julián1,Chudá Juliána1,Tunák Daniel1,Chudý František1,Kardoš Miroslav1

Affiliation:

1. Department of Forest Resources Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, Zvolen 96001, Slovakia

Abstract

Abstract Smartphones with their capability to receive Global Navigation Satellite Systems (GNSS) signals can be currently considered the most common devices used for positioning tasks, including forestry applications. This study focuses on possible improvements related to two crucial changes implemented into Android smartphone positioning in the last 3 years – dual-frequency (L1/L5) GNSS receivers and the possibility of recording raw GNSS data. The study comprises three experiments: (1) real-time measurements of individual points, (2) real-time recording of trajectories, and (3) post-processing of raw GNSS data provided by the smartphone receiver. The real-time tests were conducted using final positions provided by the internal receiver, i.e. without further processing or averaging. The test on individual points has proven that the Xiaomi Mi8 smartphone with a multi-constellation, dual-frequency receiver was the only device whose accuracy was not significantly different from single-frequency mapping-grade receiver under any conditions. The horizontal accuracy of most devices was lower during leaf-on season (root mean square errors between 5.41 and 12.55 m) than during leaf-off season (4.10–11.44 m), and the accuracy was significantly better under open-area conditions (1.72–4.51 m) for all tested devices when compared with forest conditions. Results of the second experiment with track recording suggest that smartphone receivers are better suited for dynamic applications – the mean shift between reference and measured trajectories varied from 1.23 to 5.98 m under leaf-on conditions. Post-processing of the raw GNSS data in the third experiment brought very variable results. We achieved centimetre-level accuracy under open-area conditions; however, in forest, the accuracies varied from meters to tens of meters. Observed loss of the signal strength in the forest represented ~20 per cent of the open-area value. Overall, the multi-constellation, dual-frequency receiver provided more robust and accurate positional solutions compared with single-frequency smartphones. Applicability of the raw GNSS data must be further studied especially in forests, as the provided data are highly susceptible to multipath and other GNSS adverse effects.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

Oxford University Press (OUP)

Subject

Forestry

Reference67 articles.

1. Data collection methods for forest inventory: a comparison between an integrated conventional equipament and terrestrial laser scanning;Apostol;Ann. For. Res.,2018

2. Automated Processing of Low-Cost GNSS Receiver Data

3. Influence of the juxtaposition of trees on consumer-grade GPS position quality;Bettinger;Math. Comput. For. Nat. Sci.,2012

4. GNSS use in forestry—a multi-national survey from Iran, Slovakia and southern USA;Bettinger;Comput. Electron. Agric.,2019

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3