Height growth patterns of genetically improved Scots pine and silver birch

Author:

Zeltiņš Pauls12ORCID,Jansons Āris1ORCID,Baliuckas Virgilijus3,Kangur Ahto2

Affiliation:

1. Latvian State Forest Research Institute Silava , Rigas Street 111, Salaspils LV-2169 , Latvia

2. Institute of Forestry and Engineering, Estonian University of Life Sciences , Kreutzwaldi 5, Tartu 51014 , Estonia

3. Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry , Forest Genetics and Tree Breeding Department, Liepų Str. 1, LT-53101 Girionys, Kaunas District , Lithuania

Abstract

Abstract The breeding of forest tree species in the Baltic region has notably contributed to wood production for the bioeconomy. Growth modelling is used for long-term estimates of forest development. However, usually based on data from unimproved stands, they may underestimate the growth of improved trees. Accordingly, it is important to identify and integrate the altered stand dynamics associated with improved planting stock into existing growth models to accurately capture the resulting gains or, alternatively, develop new functions specifically designed for improved trees. We used the generalized algebraic difference approach to model and analyze height growth patterns of Scots pine and silver birch with different genetic improvement levels (improved forest reproductive material categories ‘qualified’ and ‘tested’). Modelling was based on 14 260 and 55 926 height–age series from open-pollinated progeny trials in Latvia and Lithuania with an age range of 3–46 and 5–22 years for pine and birch, respectively. Dynamic generalized algebraic difference approach forms of commonly applied height growth functions with forest reproductive material-category-specific sets of coefficients were tested. The dynamic form of the Chapman–Richards and King–Prodan equations had the best fit for Scots pine and silver birch, respectively. The expected height growth of the category ‘tested’ was slightly better than the one for ‘qualified’, with more distinct differences in silver birch. The model with forest reproductive material-category-specific coefficients reflected the actual growth of improved trees; however, such application is limited to sites with medium and high site indices, where improved planting stock is typically used. We recommend the model for young stands up to the age of 20 and 40 years for pine and birch, respectively, considering the empirical data cover on which the functions are based. A unified dynamic height model with the same functional form but category-specific parameterization for different improvement levels allows a practical applicability and effective communication amongst diverse users, thereby promoting the utilization of the model amongst forest owners and managers who possess information regarding the origin of planting stock.

Funder

European Regional Development Fund

European Union’s Horizon 2020 research and innovation program

Publisher

Oxford University Press (OUP)

Subject

Forestry

Reference71 articles.

1. Economic performance of genetically improved reforestation material in joint production of timber and carbon sequestration: a case study from Finland;Ahtikoski;Forests,2020

2. Financial performance of using genetically improved regeneration material of Scots pine (Pinus sylvestris L.) in Finland;Ahtikoski;New For,2012

3. Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding;Bourdon;Silvae Genét,1977

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3