Sustainable regeneration in uneven-aged mixed deciduous forests managed by selection silviculture: the role of demographic structure

Author:

Brüllhardt Martin1,Rotach Peter1,Forrester David I2,Bugmann Harald1

Affiliation:

1. ETH Zurich, Department of Environmental Systems Science, Universitätstrasse 16, CH-8092 Zurich, Switzerland

2. Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland

Abstract

Abstract Selection silviculture aims to create and maintain uneven-aged forests with a diameter at breast height (DBH) structure that is balanced at small spatial scales such that the stem number in each DBH class is high enough to replace the harvested and outgrowing trees over time by ingrowth from the next lower class. In these forests, natural regeneration of shade-tolerant species is at an advantage over shade-intolerant species. This is particularly pronounced in continuous-cover stands dominated by European beech (Fagus sylvatica L.), which develops its crown laterally as a reaction to release events. The conditions necessary to sustain a mixture with less shade-tolerant species, e.g. sycamore (Acer pseudoplatanus L.), have been little studied. Therefore, we explored growth patterns and stand structures in mixed deciduous forests with light availability quantified using vegetation height models. Harvesting and growth patterns were derived from inventory data of beech-dominated selection forests in Thuringia, Germany and long-term forest monitoring plot data from four stands in Switzerland. Based on these data, models of stem number distributions confirmed that stand basal area in deciduous forests dominated by beech should not exceed 21–25 m2 ha−1 to maintain a sustainable structure. In these forests, a total of ~90–120 stems per ha are needed in the ingrowth DBH class (DBH 8–11.9 cm) to ensure demographic sustainability. At canopy light transmittance <10 per cent, total stem number required in the thicket stage (DBH < 8 cm) is 800–1700 ha−1. Under such shady conditions, only a small proportion of sycamore was observed (<25 per cent) in the thicket stage, as the species is likely to require canopy gaps >400 m2 (gap diameter > 22.5 m) to recruit successfully. Selection silviculture with shade-intolerant species therefore requires much lower stocking volume and larger canopy openings created by group selection cutting than what is routinely applied in practical forest management using single-tree selection principles.

Funder

Swiss Fund for Forest and Wood Research

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3