Variation in leaf area index in complex mixed-conifer forests in California’s Sierra Nevada: implications for stocking control

Author:

O’Hara Kevin L1,Battles John J1

Affiliation:

1. Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA

Abstract

Abstract The mixed-conifer forests in California’s Sierra Nevada include species from several genera (Pinus, Abies, Pseudotsuga, Calocedrus and Sequoiadendron). These forests have complex disturbance regimes dominated by low to moderate severity fire that often resulted in patchy spatial patterns and multiaged stands. Leaf area index (LAI) describes the total leaf surface area per unit area in a forest community and is related to wood and biomass production and ecosystem values such as water usage, water yields and carbon sequestration. LAI can also serve as a representation of growing space occupancy and the basis for stocking control, including in multiaged stands. Nine study sites were sampled with 22–37 0.05 ha plots per study site to estimate LAI and other metrics. LAI was highest in study sites with greater proportions of shade tolerant Abies and Calocedrus species and on higher productivity sites. Recent drought-related mortality has reduced stocking and LAI. The combination of fire suppression and timber harvest over the past century has resulted in stands with higher densities, and greater proportions of shade tolerant species. Managing these structures to restore their presettlement character will involve reducing overall stocking, increasing proportions of intolerant species and increasing fine-scale heterogeneity. LAI allocation—allocating leaf area to age classes, species or canopy strata—can be used to design new structures that resemble presettlement structures and are resilient to disturbances.

Funder

California Department of Forestry and Fire Protection

University of California Division of Agriculture and Natural Resources

USDA National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3