Development and implementation of a stand-level satellite-based forest inventory for Canada

Author:

Wulder Michael A1ORCID,Hermosilla Txomin1,White Joanne C1,Bater Christopher W1,Hobart Geordie1,Bronson Spencer C1

Affiliation:

1. Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada , 506 West Burnside Road, Victoria, British Columbia, V8Z 1M5 , Canada

Abstract

Abstract Satellite data are increasingly used to provide information to support forest monitoring and reporting at varying levels of detail and for a range of attributes and spatial extents. Forests are dynamic environments and benefit from regular assessments to capture status and changes both locally and over large areas. Satellite data can provide products relevant to forest science and management on a regular basis (e.g. annually) for land cover, disturbance (i.e. date, extent, severity, and type), forest recovery (e.g. quantification of return of trees following disturbance), and forest structure (e.g. volume, biomass, canopy cover, stand height), with products generated over large areas in a systematic, transparent, and repeatable fashion. While pixel-based outcomes are typical based upon satellite data inputs, many end users continue to require polygon-based forest inventory information. To meet this information need and have a spatial context for forest inventory attributes such as tree species assemblages, we present a new work-flow to produce a novel spatially explicit, stand-level satellite-based forest inventory (SBFI) in Canada applying image segmentation approaches to generate spatially unique forest stands (polygons), which are the fundamental spatial unit of management-level inventories. Thus, SBFI offers spatial context to aggregate and generalize other pixel-based forest data sets. Canada has developed a National Terrestrial Ecosystem Monitoring System (NTEMS) that utilizes medium spatial resolution imagery, chiefly from Landsat, to annually characterize Canada’s forests at a pixel level from 1984 until present. These NTEMS datasets are used to populate SBFI polygons with information regarding status (e.g. current land cover type, dominant tree species, or total biomass) as well as information on dynamics (e.g. has this polygon been subject to change, when, by what, and if so, how is the forest recovering). Here, we outline the information drivers for forest monitoring, present a set of products aimed at meeting these information needs, and follow to demonstrate the SBFI concept over the 650-Mha extent of Canada’s forest-dominated ecosystems. In so doing, the entirety of Canada’s forest ecosystems (managed and unmanaged) were mapped using the same data, attributes, and temporal representation. Moreover, the use of polygons allows for the generation of attributes such as tree species composition, and total biomass and wood volume in a stand-scale format familiar to landscape managers and suitable for strategic planning. The data, methods, and outcomes presented here are portable to other regions and input data sources, and the national SBFI outcomes for Canada are available via open access.

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3