East Texas forests show strong resilience to exceptional drought

Author:

Chaudhary Tilak1,Xi Weimin1,Subedi Mukti2,Rideout-Hanzak Sandra3,Su Haibin4,Dewez Nicholas P1,Clarke Stephen5

Affiliation:

1. Department of Biological and Health Sciences, Texas A&M University-Kingsville , Kingsville, TX 78363 , USA

2. Department of Natural Resources Management, Texas Tech University , Lubbock, TX 79409 , USA

3. Department of Rangeland and Wildlife Sciences, Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville , Kingsville, TX 78363 , USA

4. Department of Physics and Geosciences, Texas A&M University-Kingsville , Kingsville, TX 78363 , USA

5. Forest Health Protection, USDA Forest Service , Lufkin, TX 75901 , USA

Abstract

Abstract Drought-induced tree mortality has increased in many parts of the world because of climate change, and in some regions, has altered forest structure, species composition and ecosystem functions. These developments have the potential to reduce forest resilience and push forests over a tipping point to an alternate state (i.e. a different forest type or a non-forest ecosystem). Texas experienced an exceptional drought in 2011, which killed an estimated 65.5 million trees in the heavily forested areas of the East Texas region. The objective of this study was to understand the effects of the 2011 drought on mortality, biomass and growth in this region and explore forest stability at species, forest and ecoregion levels. We categorized 19 years’ time-series data of 1455 Forest Inventory and Analysis plots into four periods, base (2001–2003), pre-drought (2004–2010), drought (2011–2016) and post-drought (2017–2019), and used repeated-measures analysis of variance to analyse annual mortality, biomass loss, growth rates and the Forest Stability Index to understand forest stability. Our results show that tree mortality and biomass loss increased significantly during the drought period and annual growth rates declined. During the post-drought period, mortality and biomass loss rates returned to the pre-drought level and growth partially recovered. During the drought period, FSI dropped at species, forest type and ecoregion levels but recovered during the post-drought period, except for the Oak Woods and Prairies ecoregion and for forests dominated by southern red oak. Our results indicate that East Texas forests are undergoing a reorganization and recovery stage (in terms of species composition and stand structure) but have yet to reach a tipping point. Given the increased frequency and severity of climate change-induced weather events, East Texas forests could approach a tipping point in the future if there is insufficient time between events for reorganization and recovery. Further analyses are needed to understand the fate of tree species and forests in East Texas under global climate change.

Funder

Forest Health Monitoring

Publisher

Oxford University Press (OUP)

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3