Early growth of different tree species on agricultural land along a latitudinal transect in Sweden

Author:

Rytter Lars1,Lutter Reimo23

Affiliation:

1. The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-268 90 Svalöv, Sweden

2. Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden

3. Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, EE-510 06 Tartu, Estonia

Abstract

Abstract Fast-growing tree species will be an important tool in the future production of renewables and in substituting non-renewable fossil energy sources. Sweden, like other countries around the Baltic Sea, has large areas of abandoned farmland usable for biomass production, but knowledge of growth performance of tree species candidates is insufficient. An experiment was initiated where six potentially high-producing tree species were compared. The best available plant material for each species was used on five sites over latitudes 56–64°N in Sweden. Results from the first 8–9 years are reported. Short rotation coppice willow (Salix schwerinii Wolf × S. viminalis L., clone ‘Tora’) had the fastest initial growth and production in southern Sweden. Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) and poplar (Populus spp., section Tacamahaca), grown as short rotation forest, grew well over all sites and showed the highest productivity at the two northern sites. Hybrid larch (Larix ×eurolepis Henry) displayed a high potential at the two most southerly sites, whilst silver birch (Betula pendula Roth) was a medium-producing species at all sites. Norway spruce (Picea abies (L.) Karst.) started slowly, and Siberian larch (L. sukaczewii Dylis) produced poorly at the two northern sites in the initial stage. All tree species followed existing height development curves for the respective species on a high site quality level. Currently, well-growing clones of Populus spp. indicated that a wider selection of tree species can be used at high latitudes under climate change. The study showed a high growth potential for most species on former agricultural lands. However, measures to reduce climate and biological damage must be included in future efforts.

Funder

Swedish Energy Agency

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3