Effects of different management options of Norway spruce on radiative forcing through changes in carbon stocks and albedo

Author:

Kellomäki Seppo1,Väisänen Hannu1,Kirschbaum Miko U F2,Kirsikka-Aho Sara1,Peltola Heli1

Affiliation:

1. School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland

2. Manaaki Whenua - Landcare Research, Private Bag 11052, Palmerston North 4442, New Zealand

Abstract

Abstract Norway spruce (Picea abies Karst. (L.)) in the boreal zone can be managed as even-aged or uneven-aged stands, or be grown with no management at all. Here, we investigated how these management options affect carbon dynamics, particularly the carbon stocks in the forest ecosystem (trees and soil), and albedo, and their combined effect on radiative forcing compared to a reference case, clear-cut site before planting seedlings. This allowed us to assess the potential of different management regimes to mitigate global warming. We ran long-term simulations under the current climate on a sub-mesic site in central Finland (62oN) using an eco-physiological forest-ecosystem model. Compared to even-aged management, no management (old-growth forest) increased ecosystem carbon stocks by 47 per cent and decreased albedo by 15 per cent, whereas uneven-aged management reduced ecosystem carbon stocks by 16 per cent and increased albedo by 10 per cent. Only the no management option resulted in a significant net cooling effect whereas for even-aged and uneven-aged management, the opposing effects of changes in albedo and carbon stocks largely cancelled each other with little remaining net effect. On the other hand, the latter one even made a small net warming contribution. Overall, maintaining higher ecosystem carbon stocks implied the larger cooling benefits. This was evident even though lower albedo enhanced radiation absorption, and thus warming. Increasing use of the no management option by forest owners may require proper incentives such as compensation for lost harvest incomes.

Funder

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3