Global analysis of the slope of forest land

Author:

Lundbäck Mikael1,Persson Henrik2,Häggström Carola1,Nordfjell Tomas1

Affiliation:

1. Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå SE-901 83, Sweden

2. Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden

Abstract

Abstract Forests of the world constitute one-third of the total land area and are critical for e.g. carbon balance, biodiversity, water supply and as source for bio-based products. Although the terrain within forest land has a great impact on accessibility, there is a lack of knowledge about the distribution of its variation in slope. The aim was to address that knowledge gap and create a globally consistent dataset of the distribution and area of forest land within different slope classes. A Geographic Information System (GIS) analysis was performed using the open-source QGIS, GDAL and R software. The core of the analysis was a digital elevation model and a forest cover mask, both with a final resolution of 90 m. The total forest area according to the forest mask was 4.15 billion hectares whereof 82 per cent was on slope < 15°. The remaining 18 per cent was distributed over the following slope classes, with 6 per cent on a 15–20° slope, 8 per cent on a 20–30° slope and 4 per cent on a slope > 30°. Out of the major forestry countries, China had the largest proportion of forest steeper than 15° followed by Chile and India. A sensitivity analysis with 20 m resolution resulted in increased steep areas by 1 per cent point in flat Sweden and by 11 per cent points in steep Austria. In addition to country-specific and aggregated results of slope distribution and forest area, a global raster dataset is also made freely available to cover user-specific areas that are not necessarily demarcated by country borders. Apart from predicting the regional possibilities for different harvesting equipment, which was the original idea behind this study, the results can be used to relate geographical forest variables to slope. The results could also be used in strategic forest fire fighting and large-scale planning of forest conservation and management.

Funder

Department of Forest Biomaterials and Technology

Swedish University of Agricultural Sciences

Mistra Digital Forests

Publisher

Oxford University Press (OUP)

Subject

Forestry

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3