Aboveground responses to belowground root damage detected by non-destructive sensing metrics in three tree species

Author:

Azar Matan1,Mulero Gabriel2,Oppenheimer-Shaanan Yaara1,Helman David23ORCID,Klein Tamir1ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, Weizmann Institute of Science , Rehovot 7610001 , Israel

2. Department of Soil and Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot 7610001 , Israel

3. The Advanced School for Environmental Studies, The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel

Abstract

Abstract Root systems form a significant part of tree biomass and function. Yet, roots are hidden from our eyes, making it difficult to track the belowground processes. By contrast, our capacity to detect aboveground changes in trees has been continuously improving using optical methods. Here, we tested two fundamental questions: (1) To what extent can we detect aboveground responses to mechanical damage of the root system? (2) To what extent are roots redundant? We applied three different non-destructive remote sensing means: (1) optical means to derive leaf greenness, (2) infrared means to detect the changes in leaf surface temperature and (3) spectral means to derive five vegetation indices (i.e. the photochemical reflectance index (PRI), the chlorophyll photosynthesis index (CIRed-edge), the anthocyanin reflectance index 1, the structure insensitive pigment index and the normalized difference water index (NDWI)). We recorded the above metrics for hours and days and up to a month following induced root damage in three key Mediterranean tree species: Aleppo pine (Pinus halepensis Mill.), Palestine oak (Quercus calliprinos Webb.) and Carob (Ceratonia siliqua L.). To induce root damage, we removed 25, 50 and 75 percent of the root system in each species and compared it with control saplings. Tree aboveground (canopy) responses to root damage increased over time and with damage level. Leaf warming (up to 3°C) and decreased PRI were the most significant and rapid responses, with temperature differences being visible as early as 2 days following root damage. NDWI and greenness were the least sensitive, with responses detectable only at 75 percent root damage and as late as 14 or 30 days following root damage. Responses varied vastly among species, with carob being the most sensitive and pine being the least. Changes in leaf temperature and PRI indicated that leaf transpiration and photosynthesis were impaired by root damage. Although trees build roots in excess, mechanical damage will eventually decrease transpiration and photosynthesis across tree species.

Funder

IMOD

Yotam Project and Incumbent of the Edith and Nathan Goldenberg Career Development Chair

Publisher

Oxford University Press (OUP)

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3