Deep learning for forest inventory and planning: a critical review on the remote sensing approaches so far and prospects for further applications

Author:

Hamedianfar Alireza1,Mohamedou Cheikh1,Kangas Annika2,Vauhkonen Jari1

Affiliation:

1. Department of Forest Sciences, University of Helsinki , Latokartanonkaari 7 (P.O. Box 27), FI-00014 Helsinki, Finland

2. Bioeconomy and Environment Unit, Natural Resources Institute Finland (Luke) , Yliopistokatu 6 B, FI-80100 Joensuu, Finland

Abstract

Abstract Data processing for forestry applications is challenged by the increasing availability of multi-source and multi-temporal data. The advancements of Deep Learning (DL) algorithms have made it a prominent family of methods for machine learning and artificial intelligence. This review determines the current state-of-the-art in using DL for solving forestry problems. Although DL has shown potential for various estimation tasks, the applications of DL to forestry are in their infancy. The main study line has related to comparing various Convolutional Neural Network (CNN) architectures between each other and against more shallow machine learning techniques. The main asset of DL is the possibility to internally learn multi-scale features without an explicit feature extraction step, which many people typically perceive as a black box approach. According to a comprehensive literature review, we identified challenges related to (1) acquiring sufficient amounts of representative and labelled training data, (2) difficulties to select suitable DL architecture and hyperparameterization among many methodological choices and (3) susceptibility to overlearn the training data and consequent risks related to the generalizability of the predictions, which can however be reduced by proper choices on the above. We recognized possibilities in building time-series prediction strategies upon Recurrent Neural Network architectures and, more generally, re-thinking forestry applications in terms of components inherent to DL. Nevertheless, DL applications remain data-driven, in contrast to being based on causal reasoning, and currently lack many best practices of conventional forestry modelling approaches. The benefits of DL depend on the application, and the practitioners are advised to ex ante subject their requirements to operational data availability, for example. By this review, we contribute to the technical discussion about the prospects of DL for forestry and shed light on properties that require attention from the practitioners.

Funder

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

Forestry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3