COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis

Author:

Shang Ji-Yun12ORCID,Lu Yu-Jia1ORCID,Cai Xue-Wei1ORCID,Su Yin-Na1ORCID,Feng Chao1ORCID,Li Lin1ORCID,Chen She13ORCID,He Xin-Jian123ORCID

Affiliation:

1. National Institute of Biological Sciences, Beijing, 102206, China

2. Graduate School of Peking Union Medical College, Beijing, China

3. Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China

Abstract

Abstract In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Chinese Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3