BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis

Author:

Shi Hua12ORCID,Li Qiuyi13ORCID,Luo Mingyu14ORCID,Yan Haojie5ORCID,Xie Bao13ORCID,Li Xiang13ORCID,Zhong Guitao14ORCID,Chen Desheng14ORCID,Tang Dingzhong1ORCID

Affiliation:

1. State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

5. State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Abstract Perception of pathogen-associated molecular patterns (PAMPs) by plant cell surface-localized pattern-recognition receptors (PRRs) triggers the first line of plant innate immunity. In Arabidopsis thaliana, the receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) physically associates with PRR FLAGELLIN SENSING2 and plays an important role in defense against multiple pathogens. However, how BSK1 transduces signals to activate downstream immune responses remains elusive. Previously, through whole-genome phosphorylation analysis using mass spectrometry, we showed that phosphorylation of the mitogen-activated protein kinase (MAPK) MPK15 was affected in the bsk1 mutant compared with the wild-type plants. Here, we demonstrated that MPK15 is important for powdery mildew fungal resistance. PAMPs and fungal pathogens significantly induced the phosphorylation of MPK15 Ser-511, a key phosphorylation site critical for the functions of MPK15 in powdery mildew resistance. BSK1 physically associates with MPK15 and is required for basal and pathogen-induced MPK15 Ser-511 phosphorylation, which contributes to BSK1-mediated fungal resistance. Taken together, our data identified MPK15 as a player in plant defense against powdery mildew fungi and showed that BSK1 promotes fungal resistance in part by enhancing MPK15 Ser-511 phosphorylation. These results uncovered a mechanism of BSK1-mediated disease resistance and provided new insight into the role of MAPK phosphorylation in plant immunity.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3