Pathogen-induced m6A dynamics affect plant immunity

Author:

Prall Wil1ORCID,Sheikh Arsheed H2ORCID,Bazin Jeremie3ORCID,Bigeard Jean3ORCID,Almeida-Trapp Marilia2ORCID,Crespi Martin3ORCID,Hirt Heribert24ORCID,Gregory Brian D1ORCID

Affiliation:

1. Department of Biology, University of Pennsylvania , Philadelphia, PA 19104, USA

2. Center for Desert Agriculture, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia

3. CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay , 91190 Gif-sur-Yvette, France

4. Max F. Perutz Laboratories, University of Vienna , 1030 Vienna, Austria

Abstract

AbstractPosttranscriptional regulation of mRNA mediated by methylation at the N6 position of adenine (N6-methyladenosine [m6A]) has profound effects on transcriptome regulation in plants. Focused studies across eukaryotes offer glimpses into the processes governed by m6A throughout developmental and disease states. However, we lack an understanding of the dynamics and the regulatory potential of m6A during biotic stress in plants. Here, we provide a comprehensive look into the effects of m6A on both the short-term and long-term responses to pathogen signaling in Arabidopsis (Arabidopsis thaliana). We demonstrate that m6A-deficient plants are more resistant to bacterial and fungal pathogen infections and have altered immune responses. Furthermore, m6A deposition is specifically coordinated on transcripts involved in defense and immunity prior to and proceeding the pathogen signal flagellin. Consequently, the dynamic modulation of m6A on specific stress-responsive transcripts is correlated with changes in abundance and cleavage of these transcripts. Overall, we show that the m6A methylome is regulated prior to and during simulated and active pathogen stress and functions in the coordination and balancing of normal growth and pathogen responses.

Funder

United States National Science Foundation

King Abdullah University of Science and Technology

KAUST International Program OCRF-2014-CRG4

Saclay Plant Sciences-SPS

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3