The plant cell wall—dynamic, strong, and adaptable—is a natural shapeshifter

Author:

Delmer Deborah1ORCID,Dixon Richard A2ORCID,Keegstra Kenneth3ORCID,Mohnen Debra4ORCID

Affiliation:

1. Section of Plant Biology, University of California Davis , Davis, CA 95616 , USA

2. BioDiscovery Institute and Department of Biological Sciences, University of North Texas , Denton, TX 76203 , USA

3. MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, MI 48823 , USA

4. Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA 30602 , USA

Abstract

Abstract Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms—with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type–specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.

Funder

The Center for Bioenergy Innovation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3