Rice calcium/calmodulin-dependent protein kinase directly phosphorylates a mitogen-activated protein kinase kinase to regulate abscisic acid responses

Author:

Chen Min1ORCID,Ni Lan1ORCID,Chen Jing1ORCID,Sun Manman1ORCID,Qin Caihua1ORCID,Zhang Gang1ORCID,Zhang Aying1ORCID,Jiang Mingyi12ORCID

Affiliation:

1. College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

2. Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China

Abstract

Abstract Calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of abscisic acid (ABA) and abiotic stress signaling in plants and is believed to act upstream of mitogen-activated protein kinase (MAPK) in ABA signaling. However, it is unclear how CCaMK activates MAPK in ABA signaling. Here, we show that OsDMI3, a rice (Oryza sativa) CCaMK, directly interacts with and phosphorylates OsMKK1, a MAPK kinase (MKK) in rice, in vitro and in vivo. OsDMI3 was found to directly phosphorylate Thr-25 in the N-terminus of OsMKK1, and this Thr-25 phosphorylation is OsDMI3-specific in ABA signaling. The activation of OsMKK1 and its downstream kinase OsMPK1 is dependent on Thr-25 phosphorylation of OsMKK1 in ABA signaling. Moreover, ABA treatment induces phosphorylation in the activation loop of OsMKK1, and the two phosphorylations, in the N-terminus and in the activation loop, are independent. Further analyses revealed that OsDMI3-mediated phosphorylation of OsMKK1 positively regulates ABA responses in seed germination, root growth, and tolerance to both water stress and oxidative stress. Our results indicate that OsMKK1 is a direct target of OsDMI3, and OsDMI3-mediated phosphorylation of OsMKK1 plays an important role in activating the MAPK cascade and ABA signaling.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Reference73 articles.

1. The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) C-terminal domain interacts with MKK3 and harbors a typical DEF mammalian MAP kinase docking site;Bai;Plant Signal Behav,2018

2. Mechanisms of MAPK signaling specificity;Bardwell;Biochem Soc Trans,2006

3. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis;Bi;Plant Cell,2018

4. Nuclear signaling of plant MAPKs;Bigeard;Front Plant Sci,2018

5. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding;Bradford;Anal Biochem,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3