The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis

Author:

Yang Yang1ORCID,Niu Yue1ORCID,Chen Tao1ORCID,Zhang Hongkai1ORCID,Zhang Jingxia1ORCID,Qian Dong1ORCID,Bi Mengmeng1,Fan Yuemin1ORCID,An Lizhe1ORCID,Xiang Yun1ORCID

Affiliation:

1. MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University , Lanzhou 730000, China

Abstract

Abstract Pollen tube guidance regulates the growth direction and ovule targeting of pollen tubes in pistils, which is crucial for the completion of sexual reproduction in flowering plants. The Arabidopsis (Arabidopsis thaliana) pollen-specific receptor kinase (PRK) family members PRK3 and PRK6 are specifically tip-localized and essential for pollen tube growth and guidance. However, the mechanisms controlling the polar localization of PRKs at the pollen tube tip are unclear. The Arabidopsis P4-ATPase ALA3 helps establish the polar localization of apical phosphatidylserine (PS) in pollen tubes. Here, we discovered that loss of ALA3 function caused pollen tube defects in growth and ovule targeting and significantly affected the polar localization pattern of PRK3 and PRK6. Both PRK3 and PRK6 contain two polybasic clusters in the intracellular juxtamembrane domain, and they bound to PS in vitro. PRK3 and PRK6 with polybasic cluster mutations showed reduced or abolished binding to PS and altered polar localization patterns, and they failed to effectively complement the pollen tube-related phenotypes of prk mutants. These results suggest that ALA3 influences the precise localization of PRK3, PRK6, and other PRKs by regulating the distribution of PS, which plays a key role in regulating pollen tube growth and guidance.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3