Endoplasmic reticulum oxidoreductin provides resilience against reductive stress and hypoxic conditions by mediating luminal redox dynamics

Author:

Ugalde José Manuel1ORCID,Aller Isabel1,Kudrjasova Lika1ORCID,Schmidt Romy R2ORCID,Schlößer Michelle1ORCID,Homagk Maria1ORCID,Fuchs Philippe1ORCID,Lichtenauer Sophie3ORCID,Schwarzländer Markus3ORCID,Müller-Schüssele Stefanie J14ORCID,Meyer Andreas J1ORCID

Affiliation:

1. INRES-Chemical Signalling, University of Bonn , D-53113 Bonn, Germany

2. Plant Biotechnology, Bielefeld University , D-33615 Bielefeld, Germany

3. Institute for Biology and Biotechnology of Plants, University of Münster , D-48143 Münster, Germany

4. Molecular Botany, Department of Biology, TU Kaiserslautern , D-67663, Kaiserslautern, Germany

Abstract

Abstract Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. Here, we isolated viable Arabidopsis thaliana ero1 ero2 double mutants that are highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of −240 mV in the ER of Arabidopsis plants. We found EGSH values of −241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to −253 mV. Recovery to reductive ER stress induced by dithiothreitol was delayed in ero1 ero2. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in ero1 ero2 reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.

Funder

Deutsche Forschungsgemeinschaft

Priority Program SPP1710 “Dynamics

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3