STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity

Author:

Ye Jia Yuan1ORCID,Tian Wen Hao2ORCID,Zhou Miao1ORCID,Zhu Qing Yang1ORCID,Du Wen Xin1ORCID,Zhu Ya Xin1ORCID,Liu Xing Xing1ORCID,Lin Xian Yong1ORCID,Zheng Shao Jian2ORCID,Jin Chong Wei1ORCID

Affiliation:

1. State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China

2. State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China

Abstract

Abstract Protons (H+) in acidic soils arrest plant growth. However, the mechanisms by which plants optimize their biological processes to diminish the unfavorable effects of H+ stress remain largely unclear. Here, we showed that in the roots of Arabidopsis thaliana, the C2H2-type transcription factor STOP1 in the nucleus was enriched by low pH in a nitrate-independent manner, with the spatial expression pattern of NITRATE TRANSPORTER 1.1 (NRT1.1) established by low pH required the action of STOP1. Additionally, the nrt1.1 and stop1 mutants, as well as the nrt1.1 stop1 double mutant, had a similar hypersensitive phenotype to low pH, indicating that STOP1 and NRT1.1 function in the same pathway for H+ tolerance. Molecular assays revealed that STOP1 directly bound to the promoter of NRT1.1 to activate its transcription in response to low pH, thus upregulating its nitrate uptake. This action improved the nitrogen use efficiency (NUE) of plants and created a favorable rhizospheric pH for root growth by enhancing H+ depletion in the rhizosphere. Consequently, the constitutive expression of NRT1.1 in stop1 mutants abolished the hypersensitive phenotype to low pH. These results demonstrate that STOP1-NRT1.1 is a key module for plants to optimize NUE and ensure better plant growth in acidic media.

Funder

Zhejiang Province Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3