The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity

Author:

Mohnike Lennart1ORCID,Rekhter Dmitrij1ORCID,Huang Weijie2ORCID,Feussner Kirstin13ORCID,Tian Hainan2ORCID,Herrfurth Cornelia13ORCID,Zhang Yuelin2ORCID,Feussner Ivo134ORCID

Affiliation:

1. Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077 Goettingen, Germany

2. Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

3. Service Unit for Metabolomics and Lipidomics, Goettingen center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany

4. Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany

Abstract

Abstract The tradeoff between growth and defense is a critical aspect of plant immunity. Therefore, the plant immune response needs to be tightly regulated. Salicylic acid (SA) is an important plant hormone regulating defense against biotrophic pathogens. Recently, N-hydroxy-pipecolic acid (NHP) was identified as another regulator for plant innate immunity and systemic acquired resistance (SAR). Although the biosynthetic pathway leading to NHP formation is already been identified, how NHP is further metabolized is unclear. Here, we present UGT76B1 as a uridine diphosphate-dependent glycosyltransferase (UGT) that modifies NHP by catalyzing the formation of 1-O-glucosyl-pipecolic acid in Arabidopsis thaliana. Analysis of T-DNA and clustered regularly interspaced short palindromic repeats (CRISPR) knock-out mutant lines of UGT76B1 by targeted and nontargeted ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) underlined NHP and SA as endogenous substrates of this enzyme in response to Pseudomonas infection and UV treatment. ugt76b1 mutant plants have a dwarf phenotype and constitutive defense response which can be suppressed by loss of function of the NHP biosynthetic enzyme FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1). This suggests that elevated accumulation of NHP contributes to the enhanced disease resistance in ugt76b1. Externally applied NHP can move to distal tissue in ugt76b1 mutant plants. Although glycosylation is not required for the long-distance movement of NHP during SAR, it is crucial to balance growth and defense.

Funder

Goettingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences in frame of the PRoTECT program at the Georg August University Goettingen

Deutsche Forschungsgemeinschaft

Natural Sciences and Engineering Research Council (NSERC) Discovery Program

China Scholarship Council and NSERC-CREATE

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3