SEPALLATA-driven MADS transcription factor tetramerization is required for inner whorl floral organ development

Author:

Hugouvieux Veronique1ORCID,Blanc-Mathieu Romain1ORCID,Janeau Aline1ORCID,Paul Michel1ORCID,Lucas Jeremy1ORCID,Xu Xiaocai2ORCID,Ye Hailong3ORCID,Lai Xuelei3ORCID,Le Hir Sarah1ORCID,Guillotin Audrey1ORCID,Galien Antonin1ORCID,Yan Wenhao2ORCID,Nanao Max4ORCID,Kaufmann Kerstin2ORCID,Parcy François1ORCID,Zubieta Chloe1ORCID

Affiliation:

1. Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI , 17 rue des Martyrs, 38000 Grenoble , France

2. Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin , 10115 Berlin , Germany

3. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University , Wuhan 430070 , China

4. Structural Biology Group, European Synchrotron Radiation Facility , 38000 Grenoble , France

Abstract

Abstract MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.

Funder

Agence National de la Recherche

Chemistry and Biology Health Graduate School of the University Grenoble Alpes

FRISBI

Seventh Framework Programme

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3