Using a Computational Cognitive Model to Understand Phishing Classification Decisions of Email Users

Author:

Shonman Matthew1ORCID,Shi Xiaoyu2,Kang Mingqing2,Wang Zuo2,Li Xiangyang2,Dahbura Anton2

Affiliation:

1. Security Agency Cybersecurity and Infrastructure ; Arlington, VA 20598, United States

2. Information Security Institute Johns Hopkins University ; Baltimore, MD 21218, United States

Abstract

Abstract Numerous studies of human user behaviours in cybersecurity tasks have used traditional research methods, such as self-reported surveys or empirical experiments, to identify relationships between various factors of interest and user security performance. This work takes a different approach, applying computational cognitive modelling to research the decision-making of cybersecurity users. The model described here relies on cognitive memory chunk activation to analytically simulate the decision-making process of a user classifying legitimate and phishing emails. Suspicious-seeming cues in each email are processed by examining similar, past classifications in long-term memory. We manipulate five parameters (Suspicion Threshold, Maximum Cues Processed, Weight of Similarity, Flawed Perception Level, Legitimate-to-Phishing Email Ratio in long-term memory) to examine their effects on accuracy, email processing time and decision confidence. Furthermore, we have conducted an empirical, unattended study of US participants performing the same task. Analyses on the empirical study data and simulation output, especially clustering analysis, show that these two research approaches complement each other for more insightful understanding of this phishing detection task. The analyses also demonstrate several limitations of this computational model that cannot easily capture certain user types and phishing detection strategies, calling for a more dynamic and sophisticated model construction.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Human-Centred Digital Society;Interacting with Computers;2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3