Tracking causal relations in the news: data, tools, and models for the analysis of argumentative statements in online media

Author:

Willaert Tom1ORCID,Banisch Sven2,Van Eecke Paul3,Beuls Katrien4

Affiliation:

1. Vrije Universiteit Brussel, Brussels, Belgium

2. Max Planck Institute for Mathematics in the Sciences (MPI-MiS), Leipzig, Germany and Karlsruhe Institute of Technology, Institute of Technology Futures (KIT-ITZ), Karlsruhe, Germany

3. Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium

4. Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium

Abstract

Abstract Online debates and debate spheres challenge our assumptions about democracy, politics, journalism, trust, and truth in ways that make them a necessary object of study. In the present article, we argue that the study of online arguments can benefit from an interdisciplinary approach that combines computational methods for text analysis with conceptual models of opinion dynamics. The article thereby seeks to make a conceptual and methodological contribution to the field by highlighting the role of domain-crossing causal statements in debates of societal interest, and by providing a method for automatically mining such statements from textual corpora on the web. The article illustrates the relevance of this approach for the study of online debates by means of a case study in which we analyse cross-cutting statements on climate change and energy technologies from the comment section of the online newspaper The Guardian. In support of this case study, we use data and methods that are made openly available through the Penelope ecosystem of tools and techniques for computational social science.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Linguistics and Language,Language and Linguistics,Information Systems

Reference72 articles.

1. Opinion polarization by learning from social feedback;Banisch;The Journal of Mathematical Sociology,2019

2. An argument communication model of polarization and ideological alignment;Banisch;Journal of Artificial Societies and Social Simulation,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3